

Energy Storage Overview Peninsula Clean Energy Board Meeting

January 24, 2019

For:

Peninsula Clean Energy

Presented by: ICF

Energy Storage Topics

What is Energy Storage?

What is Energy Storage?

- Technologies to store electricity when it is not needed so that it is ready to use when there is demand for electricity
- This is increasingly important with high % of renewable energy sources

How is Energy Storage Described?

Storage is like a bucket of water...

Term	Energy Storage	Bucket of Water
Energy Capacity	Amount of energy stored (kWh or MWh)	How much water the bucket can hold
Power Capacity	Rate at which energy is charged or discharged (kW or MW)	How fast the bucket can filled/emptied
Duration	Ratio of energy and power capacity (hours)	How long it takes to fill/empty the bucket
Efficiency	The amount of energy lost during charging/discharging (%)	Water splashes when filling/emptying
Cycle Life	The number of charges/discharges before energy capacity falls below a certain level	Holes in the bucket form over time

What Types of Storage Exist?

- Scale: utility, commercial and industrial, residential
- Type of service
 - front of the meter (FTM): grid services, ancillary services
 - behind the meter (BTM): customer services
- Stand-alone or coupled with generator
- Stationary or mobile (trailer, electric vehicles)

Duck Curve - CAISO

Source: https://www.caiso.com/Documents/FlexibleResourcesHelpRenewables_FastFacts.pdf

Services and Applications

FTM Services Relevant to PCE

Grid Infrastructure Service

Resource Adequacy

Ancillary Services

Energy Arbitrage

Reserves

Frequency Regulation

Application	Description
Resource Adequacy	Supply capacity to meet peak electricity demands
Energy Arbitrage	Store excess energy and dispatch when valuable
Reserves	Standby capacity for unplanned capacity losses occur
Frequency Regulation	Regulate frequency of grid to maintain power quality

BTM Services Relevant to PCE

Customer Energy Management **TOU BIII** Management **Demand Charge** Reduction **PV Self-**Consumption **Backup Power**

Application	Description
TOU Bill Management	Reduce energy purchases during peak consumption hours
Demand Charge Reduction	Reduce consumption when demand charges high
PV Self- Consumption	Store PV generation for use later
Backup Power	Provides energy during power outages

Stacking Services

Storage owner can combine (stack) various applications to increase revenue opportunity

Prepared for Peninsula Clean Energy. 1/24/2019 11

Renewable Specific Applications - Wind

Renewable Specific Applications - Solar

1/24/2019

13

Renewable Load Matching

Storage can shape the output of renewable energy to match load

Very Large ESS

Typical ESS

What Does It Look Like?

Many Types of Energy Storage

Flywheel Energy Storage System

16

What Technology is Relevant?

Flywheel Energy Storage System

17

Why?

- Battery storage is:
 - Compact
 - Limited infrastructure requirements
 - Scalable
- Lithium-ion is the clear front runner
 - Cost
 - Flexible
 - Mature
- Others have promise but: expensive, limited services, lack field history
- Performance considerations (Li-ion)
 - Efficiency → ~90%
 - Lifetime → ~ 10 years

1/24/2019

Residential Storage

- Typically 3-10 kW, 5-20 kWh, 2 or 4 duration
- Lithium ion batteries
- Cost: \$1025-1800/kWh installed
- Typical Applications
 - TOU management
 - PV self consumption
 - Backup

Commercial & Industrial Storage

- Typically 50-500 kW, 50-2000 kWh, 2-4 hour duration
- Lithium ion batteries
- Cost: \$725-1375/kWh installed
- Typical Applications
 - TOU management
 - PV self consumption
 - Demand Charge Management
 - Power Quality/Backup

(Lockheed Martin)

Utility Scale Storage

- Typically 5 MW, 20 MWh, 4 hour duration
- Lithium ion batteries
- Cost: \$425-650/kWh installed
- Typical Applications
 - Grid/Ancillary Services
 - Load Matching
 - Energy Arbitrage

How Much Do They Cost?

Prepared for Peninsula Clean Energy. 1/24/2019 2

Storage System Costs

- Battery cost main driver for all costs
- Capital Costs
 - Installation
 - Batteries
 - Balance of system (everything else)
- Operating Costs:
 - Maintenance
 - Energy capacity augmentation

Costs – Past, Present, and Future

~\$70/kWh by 2030, ~\$40/kWh by 2040

Systems prices follow battery prices

24

PCE Goals and Energy Storage

Prepared for Peninsula Clean Energy. 1/24/2019 2

PCE Policy, Goals & Objectives

Reduce Greenhouse Gases (GHG)

- Steady progress in reduction of PCE portfolio GHG
- 90% GHG free in 2019 with target of 100% GHG-free in 2021

PCE Supply Portfolio

- Evolve supply portfolio (energy) to ~100% renewable by/before 2025, subject to resource availability and market cost-effectiveness
- Manage supply portfolio to match ~100% renewable supply with customer demand on an hourly basis

How can energy storage support these goals?

Opportunities for Storage and PCE

Energy

- Shaping RE output to match load & meet ~100% RE objectives
- Economically dispatch energy into CAISO day ahead or real time markets

Capacity (Resource Adequacy)

- System, Local, Flexible
- Storage can provide RA but must participate in CAISO markets

Ancillary Services

- Regulation Energy Management
 - Frequency Regulation and Reserves

New rules at CAISO are being developed and market for products/services is evolving

Thank You!

