CCA Markets, RA, Risk

Pradeep Gupta October 25, 2019

Peninsula Clean Energy

Current Concerns

- Wildfire Utility Issues
- System Reliability/Resource Adequacy
- Distributed Energy Resources (DER)
- A Review of Markets, Reliability and Risk Management

Power Industry

Western Electricity Coordinating Council (WECC)

- Western Interconnection
 - Multiple BAAs
- Balancing Authority Area (BAA)
 - Maintain Supply/Demand Balance
 - Demand = Supply + Imported Energy
 - Manage Inter-Tie Tagging
 - Manage System Frequency
 - Manage Coordinated Dispatch of Generation

8 California Balancing Authority Areas

- CAISO BAA
 - 45,000 MW
 - 26,000 circuit miles
 - Wholesale Power Market
 - Reliable Operations
 - Grid Planning

How CAISO Manages Grid

- Real-time balancing of supply (generating resources) and demand (load) to ensure grid reliability
- Manages transmission grid and operates power market
- Trading hubs: aggregated pricing nodes corresponding to CAISO transmission zones
- NP-15 and SP-15 are actively traded delivery points in the wholesale power market

PENINSULA © CLEAN I

Energy

- Transacting Energy
 - Bilateral Wholesale Markets
 - CAISO Day-Ahead Market
 - CAISO Real-Time Market
- Physical / Financial Transactions
- Inter-SC Transactions

Energy Market Price Volatility

- Key Drivers of Energy Market Prices
 - Natural Gas
 - Storage
 - Transport
 - Demand
 - Weather
 - Local and Regional
 - Hydrology
 - Policy and Changing Supply Composition
 - RPS
 - GHG Free Objectives

15,755 MW = Maximum import capacity at summer peak for the ISO

Natural Gas Drives Power Market Prices

Figure 21: Trend of gas and electric prices in the day-ahead market

IEC: Power price – System marginal energy component *irce: CAISO Price Performance in the CAISO Energy Markets; June 2019*

PENINSULA Q CLEAN ENERGY !

Weather Drives Power Market Prices

 High system load, generally associated with heat waves, is correlated with higher electricity market prices

Figure 36: Day-head prices correlated to demand level

Load (MW)

CAISO Price Performance in the CAISO Energy Markets; June 2019

Hydrology Forecast

California Snow Water Content, February 19, 2019, Percent of April 1 Average

Statewide Percent of April 1: 116%

Statewide Percent of Average for Date: 146%

Integration of Renewables

Impact of Solar / Wind on Energy Prices

Gas and imports support high loads after sun sets

Potential resource shortage¹ starting in 2020

¹ Assumes no transmission outages or other significant events affecting availability of generation

Energy Risk Management

- Risk Management Objectives
 - Mitigate Exposure to Volatility
 - Durable Rates
 - Financial Stability
 - Regulatory Compliance
- Key Energy Market Risks
 - Volumetric Risk
 - Fluctuations in the volume of supply and demand
 - Price Risk
 - Price volatility

Wind & Solar PPA Prices

Credit: LBNL, "Utility Scale Solar 2015" and "2015 Wind Technologies Market Report"

Long Term to Short Term Hedge Strategy

- Long Term Hedging
 - Load Forecasting
 - Coverage Objectives
 - Market Conditions
 - Resource Composition
- Short Term Hedging
 - Refined Load Forecast
 - Intra-Month / Intra-Day Shaping
 - Market Conditions
- Fixed Price Energy Hedging
 - Inter-SC Trades

Hedging Strategies

- Changing market = more volatility in prices
- Hedging limits PCE's exposure to market prices
- 2 types of hedges:
 - Financial Hedge
 - Renewable Power
 Purchase Agreement (PPA)
- Conduct procurements on a quarterly basis

Hedge Target Levels

	% of Load Procured	
	Min	Max
Current Year	90%	100%
Year 2	75%	90%
Year 3	65%	80%
Year 4 and Beyond	55%	70%

PENINSULA © CLEAN ENERGY 65

Example of Hedging Tools

- Inter-SC Trade of Energy
 - Tool used to fix the costs of energy supply
 - All Hours (7 X 24)
 - On-Peak Delivery (HE 07 to HE 22)
 - Off-Peak Delivery (HE 01 to HE 06 & HE23/24)
 - Shaped DeliveryImports / Exports
- Options
- Generation Resource

Forward Energy Curve

NP15 On-Peak Forward Power - EOX

MWh Coverage and Value-at-Risk Hedging

- Match Demand with Fixed Price Supply
 - Reduces exposure to market price volatility
 - Form of Insurance
 - May include premium cost similar to insurance
- Establish Coverage within Risk Tolerance
 - Maintain open position based on value-at-risk
 - Value-at-risk is a measure of risk of loss

Resource Adequacy

Current Wholesale Markets Designs

- Clear supply and demand at the marginal cost of supply, while maintaining the reliability of the system.
- Current wholesale market designs have been challenged in providing adequate financial incentives to support efficient entry.
- This in turn has led to the development of "resource adequacy," pricing mechanism.

RA Program

- Resource Adequacy Requirements
 - Load Serving Entities (LSE) must demonstrate they have purchased a defined amount of capacity
- System Resource Adequacy
 - 115% of LSE monthly peak-demand
 - Supplied from qualified resources
 - Net Qualified Capacity
- Local Resource Adequacy
 - Capacity located in specific geographic locations
 - Sub-requirement (% of overall capacity must be local)
- Flexible Resource Adequacy
 - Capacity with defined operational characteristics
 - Sub-requirement (% of overall capacity with ramping)

2018 RA Requirements (CPUC LSEs)

Tightening RA Markets

- RA prices doubled between 2018 and 2019.
- Only 463 MW of new resources came online since 2018 significantly less than the capacity retired during that period.
- Nearly 2,000 MW of solar and wind capacity will be lost due to declining ELCC values and several thousand MW of once-through-cooling generators are slated to retire.

Figure E.10 Generation additions and retirements (June 2015- June 2019*)

RA Value of Renewable Resources

- Historically based on "exceedance" approach:
 - The minimum amount of generation produced by the resource in a 70% of included hours.
- Now- Effective Load Carrying Capability (ELCC %) and Qualifying Capacity (QC) of wind and solar resources.
- ELCC- derating factor applied to maximum output (Pmax) to determine its QC.

CalCCA Proposal

- Prescribe the volume of RA each IOU must make available to the market
- Require the IOUs to offer excess RA products for up to a three-year term
- Develop guidance on the use of price floors in IOU requests for offers to ensure the IOUs maximize the volume of RA that can be sold.

Central Procurement Entity (RA-CPE)

- Meet Residual of a three-year forward procurement obligation that is not met by individual LSEs.
- RA-CPE will be a competitively neutral, independent, and creditworthy entity
- Who will be RA-CPE?

.